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Abstract. Recurrent pediatric tumors pose a challenge 
since treatment options may be limited, particularly after 
previous irradiation. Positive results have been reported for 
chemotherapy and hyperthermia, but the combination of 
re‑irradiation and hyperthermia has not been investigated 
thus far, although it is a proven treatment strategy in adults. 
The theoretical feasibility of re‑irradiation plus hyperthermia 
was investigated for infield recurrent pediatric sarcoma in 
the pelvic region and the extremities. A total of 46 recurrent 
pediatric sarcoma cases diagnosed at the Academic Medical 
Center (Amsterdam, The Netherlands) between 2002 and 2017 
were evaluated. Patients not previously irradiated, outfield 
recurrences and locations other than the pelvis and extremities 
were excluded, ultimately yielding four eligible patients: 
Two with sarcomas in the pelvis and two in an extremity. 
Re‑irradiation and hyperthermia treatment plans were simulated 
for 23x2 Gy treatment schedules and weekly hyperthermia. 
The radiosensitizing effect of hyperthermia was quantified 
using biological modelling with a temperature‑dependent 
change in the parameters of the linear‑quadratic model. The 
possible effectiveness of re‑irradiation plus hyperthermia 
was estimated by calculating the equivalent radiotherapy 
dose distribution. Treatment planning revealed that tumors 
located in the pelvis and the extremities can be effectively 
heated in children. Equivalent dose distributions indicated 

that hyperthermic radiosensitization can be quantified 
as a target‑selective additional D95% of typically 10  Gy, 
thereby delivering a possibly curative dose of 54 Gy, without 
substantially increasing the equivalent dose to the organs 
at risk. Therefore, re‑irradiation plus hyperthermia is a 
theoretically feasible and possibly effective treatment option 
for recurrent pediatric sarcoma in the pelvic region and the 
extremities, and its clinical feasibility is worthy of evaluation.

Introduction

Pediatric sarcomas represent ~10% of all childhood malig‑
nancies (1). Treatment generally consists of a combination 
of surgery, chemotherapy and/or radiotherapy. Due to the 
continuously improving diagnostics and treatment techniques, 
the 5‑year survival rate is currently 60‑70% (2,3). However, 
the survival rate of pediatric sarcoma patients with recurrent 
disease is <40% (4‑6). The treatment options for this patient 
group are limited, since therapies are associated with (late) 
adverse events (7,8), and applying a second curative treatment 
scheme may increase the risk of adverse events to unaccept‑
able levels. This is particularly relevant for patients with local 
recurrence following previous radiotherapy.

Hyperthermia, i.e., heating of tumors to 39‑43˚C for 
1  h, is a treatment modality that may be combined with 
radiotherapy and/or chemotherapy to significantly enhance 
their effectiveness (9,10). Several randomized trials in adults 
have demonstrated the effectiveness of hyperthermia in the 
control of soft tissue sarcomas and recurrent breast, cervix 
and head‑neck carcinomas, among others, with no significant 
hyperthermia‑related increase in side effects  (11‑17). For 
example, low‑dose re‑irradiation combined with hyperthermia 
applied for recurrent breast cancer can increase the complete 
response rate from 38 to 78%, compared with re‑irradiation 
alone (13).

Although hyperthermia is a clinically proven treatment for 
several tumors in adults (11‑15), it is not commonly applied 
for pediatric tumors. The effectiveness of chemotherapy 
and hyperthermia has been investigated for children with 
sarcomas and germ cell tumors that respond poorly to or 
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recur after chemotherapy (18). A phase II trial demonstrated 
that chemotherapy plus hyperthermia are successful as local 
therapy, with a 5‑year survival of 52% (19). A prospective 
study for recurrent or refractory malignant non‑testicular 
germ cell tumors further demonstrated the effectiveness of 
locoregional hyperthermia and chemotherapy, with a 5‑year 
survival of 72% (20); the long‑term prognosis for patients with 
poor response to therapy or after the first relapse was almost 
similar to that for patients receiving first‑line treatment.

A possible role of radiotherapy plus hyperthermia for 
pediatric tumors has not been investigated thus far, despite 
the positive results of chemotherapy plus hyperthermia in 
pediatric patients and all successful clinical applications of 
hyperthermia combined with chemotherapy or radiotherapy 
in adults. This treatment combination may prove to be very 
effective for previously irradiated recurrent sarcomas, since 
a second curative dose would increase the risk of toxicity to 
unacceptable levels and the clinical feasibility of re‑irradiation 
plus hyperthermia for adults with radiation‑associated 
sarcoma has been demonstrated (21). Given the poor prognosis 
of pediatric patients with recurrent sarcoma, this treatment 
option is worth investigating further.

Before initiating a clinical feasibility study, the theoretical 
feasibility should be explored. Treatment planning combined 
with biological modelling is helpful for evaluating this theo‑
retical feasibility. The radiosensitizing effect of hyperthermia 
may be considered as a local increase in tumor dose, which 
may be quantified using biological modelling, with a temper‑
ature‑dependent change in the radiosensitivity parameters of 
the linear‑quadratic model (22,23). According to this concept, 
the possible effectiveness of re‑irradiation and hyperthermia 
can be estimated by calculating the equivalent 3D dose distri‑
bution (24‑26), i.e., the radiation dose that exerts a biological 
effect equivalent to that of the combined re‑irradiation plus 
hyperthermia treatment.

The aim of the present study was to investigate the theo‑
retical feasibility of re‑irradiation plus hyperthermia for infield 
recurrent pediatric sarcomas. Re‑irradiation and hyperthermia 
treatment plans were simulated and equivalent 3D dose distri‑
butions were calculated and evaluated based on dose‑volume 
histograms (DVH).

Materials and methods

Patient selection. In the Emma Children's Hospital ‑ Academic 
Medical Center (Amsterdam, The Netherlands), 46 pediatric 
patients (aged <18  years) were diagnosed with recurrent 
sarcoma (29 Ewing's sarcomas, 10 rhabdomyosarcomas and 
7 non‑rhabdomyosarcoma soft tissue sarcomas) between 2002 
and 2017, 41 of which developed after previous irradiation 
and 11 were infield recurrences. Only pelvic and extremity 
tumors were included, due to our ample experience with 
clinical hyperthermia for these locations in adults. Bulky 
pelvic target volumes with a diameter >15 cm were excluded, 
since locoregional hyperthermia at 70 MHz (see subsection 
‘Hyperthermia treatment planning’) yields a heating focus of 
~10‑15 cm and, thus, effective heating of bulkier volumes is 
difficult. This selection process resulted in 2 patients with a 
recurrent pelvic tumor and 2 patients with a recurrence in an 
extremity (Fig. 1).

Recurrent pelvic sarcomas
Patient 1. A 3‑year‑old male patient presented with recurrent 
embryonal rhabdomyosarcoma, located perivesically in the 
left side of the pelvis. The tumor was first diagnosed at the age 
of 1 year. The primary tumor was treated with chemotherapy, 
followed by resection and proton radiotherapy (50.4 Gy in 
28 fractions) combined with pulmonary radiotherapy due to 
lung metastases.

Patient 2. A 17‑year‑old female patient presented with a second 
recurrence of a pararectal alveolar rhabdomyosarcoma. The 
primary tumor was diagnosed at the age of 15 years and treated 
with radiotherapy (54 Gy; 30x1.8 Gy) and chemotherapy. The 
first recurrence at 16 years of age was located in both breasts 
and the left inguinal area, and was treated with radiotherapy 
[41.4 Gy; 23x1.8 Gy, followed by a boost to 50.4 Gy for posi‑
tron emission tomography (PET)‑positive breast lesions].

Recurrent extremity sarcomas
Patient 3. A 14‑year‑old male patient presented with recurrent 
Ewing's sarcoma in the second metatarsal bone of the right 
foot. The first diagnosis was at 12 years of age and treatment 
consisted of chemotherapy, followed by resection and post‑
operative radiotherapy (54 Gy; 30x1.8 Gy). Lung metastases 
were resected, followed by pulmonary radiotherapy (15 Gy; 
10x1.5 Gy).

Patient 4. A 13‑year‑old male patient presented with recurrent 
alveolar rhabdomyosarcoma in the left lower leg. The tumor 
was first diagnosed at 11 years of age at an advanced stage, 
with lymph node (inguinal, iliac and para‑aortal), bone and 
lung metastases. Initial treatment consisted of chemotherapy 
followed by radiotherapy to all primary locations. The location 
of the recurrence initially received 54 Gy (30x1.8 Gy).

Treatment simulations
Radiotherapy treatment planning. External beam re‑irradiation 
treatment plans for an Elekta Agillity 10MV machine were 
created using the diagnostic computed tomography scans. The 
gross tumor volume (GTV), planning target volume (PTV) 
and organs at risk (OARs; femur, rectum and bladder), if 
relevant, were delineated. Treatment plans were created for a 
re‑irradiation schedule of 23x2 Gy and weekly hyperthermia, 
as applied clinically for recurrent breast cancer. Treatment 
planning was performed at 2x2x2  mm3 resolution using 
Raystation (version 6.0; RaySearch Labs, Stockholm, Sweden). 
Volumetric modulated arc therapy (VMAT) plan optimizations 
were started with objective values that were individually 
optimized to minimize OAR dose, while maintaining 
ICRU‑based PTV coverage (D98% >95%, D2% <107%) (27).

Hyperthermia treatment planning. Hyperthermia treatment 
of pelvic tumors was simulated for the 70 MHz AMC‑4 
system, which consists of a ring of four waveguides (fixed 
aperture size 20x34 cm2) positioned around the patient (28). 
For the extremities, the 70  MHz AMC‑2 system was 
simulated, consisting of two waveguides positioned at the 
top and bottom of the target (29). Waveguides with different 
aperture sizes may be selected for this system, and an 
aperture size of 20x34 cm2 was selected. For both systems, 
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water boluses provide skin cooling and coupling of the 
electromagnetic energy into the tissue. Following regular 
clinical practice, aggressive cooling (bolus temperature 
12˚C) was simulated for deep heating of the pelvis to avoid 
overheating of the skin, and a higher bolus temperature 
(42˚C) was modelled for heating the extremities, since 
the skin is part of the target volume. The set‑up for pelvic 
and extremity tumors is shown in  Fig.  2. Hyperthermia 
treatment planning was performed using Plan2Heat  (30). 
Hounsfield unit‑based tissue segmentation into muscle, fat, 
bone and air was combined with delineations to create a 
patient model, which was inserted in the applicator model 
for the AMC‑4 or AMC‑2 system. Literature‑based dielectric 
and thermal properties were assigned, and electric field 
and thermal computations were performed using finite 
difference methods (30,31) at 2.5x2.5x2.5 mm3 (pelvis) or 
1x1x2.5 mm3 (extremities). Temperature‑based optimization 
was performed to maximize the T90, i.e., the temperature 
achieved in at least 90% of the PTV, with hard constraints 
of 45˚C to all normal tissues (30,32), since a pain sensation 
is experienced when tissue temperatures exceed 45˚C (33).

Biological modelling. Biological evaluation of the combined 
radiotherapy and hyperthermia treatment was performed 
using the in‑house developed X‑Term software package, 
which calculates the 3D  equivalent radiotherapy dose 

distribution (EQDRT) for a user‑specified treatment schedule (26). 
Calculations are based on the linear‑quadratic (LQ) model, 
expressing the survival fraction (SF) of cells after delivering n 
fractions with a fraction dose d (Gy) according to the following 
equation:

	 	 SF(n,d,α,β) = e‑n(αd+βd2),

where α (Gy‑1) and β (Gy‑2) are the radiosensitivity parameters. 
X‑Term uses an extension of the LQ‑model, in which α and 
β depend on the temperature and the time interval between 
radiotherapy and hyperthermia. Additionally, X‑Term 
accounts for the direct hyperthermic cytotoxicity in tumor 
tissue  (34). Mathematical functions were parametrized such 
that the EQDRT depends mainly on the α/β  ratio and on the 
hyperthermia‑enhancing factors, rather than on the individual 
parameters  (34). More details on the software package, 
mathematics and the derivation of the temperature dependency 
of α and β may be found in earlier publications (26,34).

Weekly application of hyperthermia directly after the first 
radiotherapy fraction was modelled. Ratios α/β=10 Gy and 
α/β=3 Gy were assumed for tumor and OARs, respectively, 
under non‑hyperthermic conditions (37˚C). Since curative 
radiation schedules for primary sarcomas typically use a 
fraction dose of 1.8 Gy, the reference fraction dose for all 
EQDRT calculations was 1.8 Gy.

Figure 1. Flow chart of the patient selection process. CT, computed tomography.
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The reliability of biological modelling is affected by 
the statistical accuracy of the model parameters. Therefore, 
a 95% confidence interval for the parameters was trans‑
lated into a confidence interval for EQDRT, as described by 
van Leeuwen et al (34).

Statistical analysis. The planned temperature distributions 
were evaluated by indexed temperatures T10, T50 and T90, i.e., 
the temperature achieved in at least 10, 50 and 90% of the 
PTV, following the quality assurance guidelines (35). Ideally, 
the EQDRT should approach the standard curative dose (54 Gy). 
The EQDRT distributions were analyzed using standard DVH 
parameters. The increase in D98% and D95% by adding 
hyperthermia was evaluated for the PTV (36). Additionally, 
the increase in D2% for the OARs was evaluated (36).

Results

Recurrent pelvic sarcomas. For patient 1 (3‑year‑old male) the 
planned PTV temperatures T10, T50 and T90 were 43.9, 42.7 and 
41.1˚C, respectively, with therapeutic temperatures between 
39 and 43˚C. The total absorbed power in the patient was 
168 W. Fig. 3 shows the radiation dose distribution, converted 
to a reference fraction dose of 1.8  Gy, the temperature 
distribution, the predicted EQDRT of the combined treatment 
and the DVH for the original and equivalent radiation dose 
distributions. A substantial increase in equivalent dose for 
the PTV is predicted, with a considerably lower increase in 
equivalent OAR dose. The D98% in the PTV is predicted 
to increase from 44.4 to 51.6 Gy; the D95% increases from 
45.4 to 53.4 Gy, which approaches the curative dose of 54 Gy. 
Although the rectum and bladder are located within the PTV, 
the effect is rather tumor‑selective: the D2% increases from 
49.2 to 54.3 Gy and from 49.0 to 53.8 Gy for the bladder and 

rectum, respectively; i.e., approximately half of the increase 
in D95%.

For patient  2 (17‑year‑old female) the planned PTV 
temperatures T10, T50 and T90 were 41.8, 40.8 and 39.5˚C, 
respectively. The total absorbed power in the patient was 471 W. 
Fig. 4 shows the dose and temperature distributions. Although 
therapeutic heating is possible, achievable temperatures are 
lower compared with those for patient 1, which is also reflected 
by a lower enhancement in EQDRT. The D98% increases from 
41.7 to 45.3 Gy and the D95% increases from 44.2 to 48.3 Gy. 
The overlap of the OAR (bladder) with the PTV is very small; 
thus, the predicted EQDRT in the bladder is practically the 
same as the original dose.

Recurrent extremity sarcomas. For patient 3 (foot; 14‑year‑old 
male) the planned PTV temperatures T10, T50 and T90 were 
43.3, 42.2 and 41.4˚C, respectively. The total absorbed power 
in the patient was 19 W. Fig. 5 shows the radiation dose distri‑
bution, converted to a reference fraction dose of 1.8 Gy, the 
temperature distribution, the EQDRT of the combined treat‑
ment and the DVHs for the original and equivalent radiation 
dose distributions. A substantial increase in equivalent PTV 
dose is predicted: the D98% increases from 28.0 to 38.2 Gy 
and the D95% increases from 35.0 to 46.1 Gy. As a result of 
skin sparing in the extremities, the D98% and D95% of the 
original PTV dose are quite low, reflecting an underdosage of 
the skin. Adding hyperthermia yields a substantial increase 
of the equivalent dose in this region, while no substantial 
additional toxicity in the healthy skin is expected due to the 
tumor selectivity of hyperthermia. For the GTV, the D98% and 
D95% increase from 46.4 to 54.4 Gy and from 46.5 to 54.7 Gy, 
respectively, thereby realizing a curative dose of 54 Gy.

For patient 4 (lower leg; 13‑year‑old male) the planned 
temperatures T10, T50 and T90 were 44.2, 43.0 and 41.3˚C. The 

Figure 2. Schematic heating of pelvic and extremity tumors.
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Figure 3. Radiation dose distribution (RT dose) for the 3‑year-old male patient with recurrent pelvic sarcoma, showing the temperature distribution (HT 
temperature), the EQDRT for the combined treatment (equivalent dose RT + HT) and the dose‑volume histograms for radiation alone (dotted lines) and the 
combined treatment (solid lines). The reference fraction dose is 1.8 Gy. RT, radiotherapy; HT, hyperthermia; PTV, planning target volume.

Figure 4. Radiation dose distribution (RT dose) for the 17‑year-old female patient with recurrent pelvic sarcoma, showing the temperature distribution (HT 
temperature), the EQDRT for the combined treatment (equivalent dose RT + HT) and the dose‑volume histograms for radiation alone (dotted lines) and the 
combined treatment (solid lines). The reference fraction dose is 1.8 Gy. RT, radiotherapy; HT, hyperthermia; PTV, planning target volume.
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Figure 5. Radiation dose distribution (RT dose) for the 14‑year-old male with recurrent sarcoma of the right foot, showing the temperature distribution (HT 
temperature), the EQDRT for the combined treatment (equivalent dose RT + HT) and the dose‑volume histograms for radiation alone (dotted line) and the com‑
bined treatment (solid line). The reference fraction dose is 1.8 Gy. RT, radiotherapy; HT, hyperthermia; PTV, planning target volume; GTV, gross tumor volume.

Figure 6. Three orthogonal slices of the radiation dose distribution (RT dose) for the 13‑year-old male with recurrent sarcoma of the leg, showing the tem‑
perature distribution (HT temperature), the EQDRT for the combined treatment (equivalent dose RT + HT) and the dose‑volume histograms for radiation alone 
(dotted line) and the combined treatment (solid line). The reference fraction dose is 1.8 Gy. RT, radiotherapy; HT, hyperthermia; PTV, planning target volume; 
GTV, gross tumor volume.
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total absorbed power in the patient was 61 W. Fig. 6 shows 
the dose and temperature distributions. The D98% in the PTV 
increases from 36.5 to 45.8 Gy and the D95% increases from 
40.6 to 50.0 Gy. For the GTV, the D98% and D95% increase 
from 46.3 to 58.9 Gy and from 46.5 to 60.9 Gy, respectively, 
again realizing a curative dose.

Discussion

This simulation study demonstrates that re‑irradiation plus 
hyperthermia may be a feasible treatment combination for 
infield recurrent pediatric sarcomas in the pelvic region or 
the extremities. 3D equivalent dose calculations combining 
clinically representative dose and temperature distributions 
predicted that radiosensitization by hyperthermia yields 
an increase in equivalent D95% of typically 10 Gy, thereby 
delivering a possible curative dose without a substantial 
additional risk of normal tissue toxicity. This treatment 
combination may thus improve the currently disappointing 
survival rate of sarcoma patients with infield recurrence 
and warrants further clinical evaluation. The long‑term 
effectiveness and possible late complications of this treatment 
combination in pediatric recurrent sarcoma patients must be 
assessed in a clinical study.

An important aspect of biological modelling is the choice 
of the parameter values used. The value of α/β for tumor tissue 
may vary between different pathologies  (37). The present 
study assumed the commonly applied value of α/β=10 Gy 
for tumor tissue under normothermic conditions. The 
temperature‑dependent behavior of the enhancement factor 
of α/β was estimated based on detailed experiments for cervical 
cancer cells, as described in an earlier study (34). The accuracy 
of the prediction of the equivalent dose would be expected to 
improve if more exact parameter values were available, but 
derivation of such parameter values is very challenging; thus, a 
commonly used value was adopted in this study. Although the 
exact increase in equivalent dose may be somewhat different 
when the precise parameters are known, the overall conclusion 
that hyperthermia can strongly increase the equivalent tumor 
dose is not likely to change substantially. A clinically relevant 
enhancement in radiosensitivity has also been demonstrated in 
clinical studies when adding hyperthermia for cervical cancer 
(α/β >10 Gy) and (recurrent) breast cancer (α/β <10 Gy) (12,13). 
Biological modelling studies evaluating radiotherapy plus 
hyperthermia for cervical and prostate cancer also predicted 
the same order of magnitude increase in equivalent tumor 
dose (24,25). The radiosensitization effect by hyperthermia is 
thus more determinant of the increase in equivalent radiation 
dose than the exact initial reference value of α/β. Realistic 
uncertainties in hyperthermic radiosensitization were included 
in the modelling, as reflected by the confidence intervals.

Regarding normal tissue and OARs, the conventional value 
of α/β=3 Gy for late effects was applied, as commonly used 
for biological modelling in both adults and children (38,39). 
Clinical studies combining radiotherapy and hyperthermia 
in adults for several tumor sites have demonstrated that the 
toxicity in normal tissue is generally not significantly increased 
compared with radiation or re‑irradiation alone  (12,13). 
Although there is no reason to hypothesize that normal tissue 
toxicity will increase in children, it is currently unknown 

whether this value of α/β is fully appropriate for pediatric 
patients, as the OARs at a young age may behave radiobio‑
logically differently compared with the same OARs in adults. 
Nevertheless, most relevant and determining for the effect of 
re‑irradiation plus hyperthermia is the increase in equivalent 
radiation dose by adding hyperthermia, which is determined 
more by the radiosensitization due to hyperthermia rather than 
by the initial normothermic reference value of α/β.

There are usually some challenges regarding the maximum 
cumulative dose in normal tissue when applying re‑irradi‑
ation (40). Although the hyperthermic enhancement of the 
radiation dose is already predicted to be very low in normal 
tissue in the examples discussed in this study, a time interval 
(e.g., 1 h) between radiotherapy and hyperthermia may be 
applied to further minimize the enhancement in normal tissue, 
if desired (41,42). This may be required when there is a risk 
of exceeding the tolerance dose to a specific OAR, in case 
of slowly proliferating tissues (e.g., bone and central nervous 
system) receiving a relatively high cumulative dose, or in case 
the time interval between the initial radiation treatment and 
re‑irradiation is relatively short. Predictably, applying a time 
interval will also somewhat reduce the equivalent tumor dose, 
and biological modelling may be helpful in determining a 
good balance, such that a sufficiently high tumor dose can still 
be expected.

The results exhibited some variation regarding increased 
effectiveness among the four patients, which is due to 
differences in heatability. With locoregional hyperthermia, 
excessive temperatures (hot spots) in normal tissue may 
develop at tissue interfaces (e.g., fat, muscle and bone) due to 
the differences in tissue properties (43,44). These hot spots 
should be avoided and, therefore, all tissue temperatures 
were constrained to 45˚C, which can limit the maximum 
achievable target temperature. Extremity tumors are easier 
to heat compared with pelvic tumors, due to their smaller 
anatomical size and the lower number of tissue interfaces 
at which hot spots may occur. Due to the differences in 
heatability between patients, it is advisable to perform 
pre‑planning to determine whether effective heating is 
possible (i.e., T90 >39˚C) (45,46), prior to deciding clinical 
treatment with re‑irradiation and hyperthermia. Particularly 
for relatively large tumor volumes, and in case of multiple 
treatment options, it should be determined first whether suffi‑
cient target coverage can be achieved.

When pre‑planning indicates that the target region cannot 
be effectively heated and the treatment intent is still cura‑
tive, re‑irradiation plus whole‑body hyperthermia may be 
considered. There is some, albeit limited, clinical experience 
with whole‑body heating for children in combination with 
chemotherapy (47‑49). Whole‑body heating requires a dedi‑
cated heating device, which heats the patient to a maximum 
of 41.8˚C. This ensures a homogeneous target temperature 
and, thus, effective enhancement (~10 Gy) of the radiotherapy. 
Whole‑body hyperthermia is not the first choice of treatment, 
however, since deep analgesia and sedation or general anes‑
thesia are required, and greater efforts are needed (including 
intensive medical care) compared with locoregional hyper‑
thermia.

The AMC‑4 system, as it is extensively used for 
adults  (12,50,51), was modelled for heating pelvic tumors. 
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The 17‑year‑old patient had the body sizes of a small adult, 
and the 3‑year‑old patient had a tumor located relatively low 
in the pelvis; therefore, heating with the AMC‑4 system was 
considered feasible. However, the axial length of the patient 
covered by the waveguides and boluses is 40 cm, which may 
not be feasible for very small children or tumors located 
relatively high in the pelvis. In those cases, a system with 
smaller antennas would be desired, e.g., the BSD Sigma‑30 
(Pyrexar Medical, Salt Lake City, UT, USA) (20,52). However, 
this system operates at a higher frequency, yielding a smaller 
heating focus. Additionally, a higher frequency (typically 
90‑130 MHz) also improves the steering capabilities, which 
would possibly allow further reduction of normal tissue 
heating, for example of the femoral heads for patient  1. 
Pre‑planning should evaluate whether and to which extent this 
affects target coverage.

Sarcomas often contain hypoxic regions with reduced 
radiosensitivity. Hypoxic tumors are more sensitive to hyper‑
thermia (53) and the mechanism responsible for part of the 
apparent hyperthermic radiosensitization of hypoxic tumors 
is direct cell kill. The rate of direct cell kill depends on the 
oxygenation status. A strong dose‑effect relationship exists, 
both for direct cytotoxicity and for radiosensitization, due to 
inhibition of DNA repair by hyperthermia (54‑56). Enhanced 
direct cytotoxicity was not accounted for in the present study, 
since no information on the oxygenation status was available. 
Therefore, the predicted increase in equivalent dose is likely 
an underestimation of the real enhancement. The accuracy of 
biological treatment planning may be improved by including 
hypoxia in the models (57). This is subject of further research 
and requires determination of the oxygenation status and tumor 
reoxygenation in individual patients by hypoxia PET/MRI 
techniques (58,59).

Additionally, the tissue properties (fibrosis, necrosis) and 
tumor perfusion may also be altered in previously irradiated 
tissues, which may affect the temperature distribution and, 
thereby, the equivalent dose calculations. Incorporating these 
influences on pre‑irradiated tissue in the X‑Term calculation 
models requires further research as well as dedicated imaging 
techniques.

To avoid complications due to excessive temperatures 
developing in normal tissue, temperature feedback during 
treatment is crucial. For adults, standard (minimally) invasive 
thermometry probes are placed in or close to the tumor and 
normal tissue heating is monitored by patient feedback. When 
tissue temperatures exceed 45˚C, a pain sensation is experi‑
enced (33) and the operator changes the system settings to 
resolve the hot spot (60). In general, this procedure should also 
be feasible for children; however, anesthesia might be required 
for very young children and exact hot spot locations cannot be 
communicated. Sedation does not increase the risk of burns at 
elevated temperatures (20). For those cases, 3D non‑invasive 
thermometry feedback by MR is desired, particularly in the 
pelvis. Additionally, some studies suggest that heating pelvic 
malignancies in pediatric patients may increase the risk of 
osteonecrosis or avascular necrosis  (AVN)  (61,62). Young 
age is also considered a possible risk factor for AVN (61,62). 
Therefore, high temperatures in the femoral heads should 
be avoided. This may be achieved by setting more strict 
temperature constraints to the femoral heads when optimizing 

antenna settings and/or using a higher operating frequency, as 
mentioned above.

MR‑thermometry is not generally available and, based on 
the previous considerations, a first clinical feasibility study 
evaluating re‑irradiation plus hyperthermia for infield recur‑
rent pediatric sarcomas will be initiated for patients with 
pelvic malignancies not requiring anesthesia, and extremity 
sarcomas. For the latter category, age will be no limitation, 
since OARs from hyperthermia are absent and the incidence 
of treatment‑limiting hot spots should be low. Standard ther‑
mometry probes will then be sufficient to monitor treatment 
quality.

In the future, once the clinical effectiveness of re‑irradi‑
ation plus hyperthermia for recurrent pediatric sarcoma has 
been established, the effectiveness of radiotherapy plus hyper‑
thermia for primary tumors may be explored. Radiotherapy 
may also be necessary in the first‑line treatment of childhood 
sarcomas, particularly when surgery alone (R1/R2 resection) 
is not sufficient for local tumor control or results in mutilating 
sequelae. However, radiotherapy is associated with a significant 
risk of late toxicity, such as atrophy, fibrosis and bone growth 
abnormalities in the extremities (63). To improve normal tissue 
sparing and reduce the risk of (late) toxicities, proton beam 
therapy is emerging, which yields more precisely focused dose 
distributions, thereby reducing the dose in the low‑to‑medium 
dose regions, but not for the OARs in close proximity to the 
tumor (64). Adding hyperthermia may allow reduction of the 
delivered dose, thereby significantly reducing the incidence of 
late side effects.

In conclusion, re‑irradiation with 23x2 Gy plus hyper‑
thermia is a theoretically feasible and possibly effective 
treatment for recurrent pediatric sarcoma in the pelvic region 
or the extremities. Hyperthermic radiosensitization is predicted 
to yield a target‑selective additional D95% of typically 10 Gy, 
thereby delivering a curative equivalent dose of 54 Gy.
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