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Abstract

Shortage of labeled data has been holding the surge of deep learning in healthcare
back, as sample sizes are often small, patient information cannot be shared openly,
and multi-center collaborative studies are a burden to set up. Distributed machine
learning methods promise to mitigate these problems. We argue for a split learning
based approach and apply this distributed learning method for the first time in the
medical field to compare performance against (1) centrally hosted and (2) non
collaborative configurations for a range of participants.
Two medical deep learning tasks are used to compare split learning to conventional
single and multi center approaches: a binary classification problem of a data set of
9000 fundus photos, and multi-label classification problem of a data set of 156,535
chest X-rays. The several distributed learning setups are compared for a range of
1-50 distributed participants.
Performance of the split learning configuration remained constant for any number
of clients compared to a single center study, showing a marked difference com-
pared to the non collaborative configuration after 2 clients (p < 0.001) for both
sets.
Our results affirm the benefits of collaborative training of deep neural networks
in health care. Our work proves the significant benefit of distributed learning in
healthcare, and paves the way for future real-world implementations.

1 Introduction

Deep neural networks have become the state-of-the-art for a range of tasks such as image classifi-
cation, speech recognition, natural language processingCollobert and Weston [2008] and based on
complex data such as electronic health records (EHR), imaging, bio-sensors, omics and text.

Learning with these networks relies on vast amounts of structured training data to achieve proper
performance such that it increases generalization and robustness Miotto et al. [2017]; Panch et al.
[2018]. However, medical sample sizes tend to be small, especially in rarer diseases Dluhos et al.
[2017]. Thus traditionally, clinical models have often been trained on small data sets Panch et al.
[2018].

Multi-center distributed studies can significantly increase the available amount of data and its diver-
sity by centralization of the data sets, but it comes with several drawbacks: Setting up a multi-center
organizational collaboration can be difficult as patient data can often not leave the premise due to
ethical or regulatory concerns such as HIPAA Annas [2003]; Mercuri [2004]; Nass et al. [2009];
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Luxton et al. [2012]. Secondly, institutions might find their data to be too valuable to share Xia et al.
[2018]. Lastly, the additional storage and bandwidth required to store this data can be a burden.
These factors heavily impede collaboration in health in a traditional setting.

An alternative to centrally hosting information are secure and private distributed learning solutions.
These methods include model averagingSu and Chen [2015], large scale synchronous gradient de-
scent (LS-SGD)Chen et al. [2016], federated learningMcMahan et al. [2016], cyclical weight trans-
ferChang et al. [2018] and split learning[Gupta and Raskar, 2018; Vepakomma et al., 2017, 2018a;
Singh et al., 2019; Sharma et al., 2019]. These models can be compared on several properties, which
are performance with respect to a centralized setup, privacy, bandwidth usage and distribution of
computational load.

From previous survey by Vepakomma et. al.Vepakomma et al. [2018b] several properties of these
methods can be identified and weighed for our clinical implementation. Model averaging and LS-
SGD only allow for synchronous training, meaning the model can only continue training after all
clients have yielded their input. This would present major logistical challenges, especially when
clients work with different network connection speeds or hardware configurations. Other methods
like cyclical weight transfer do not preserve optimal performance compared to computing in a cen-
tralized setting by design. Lastly, every method differs in the amount of information it reveals. For
a more thorough comparison of these methods we would like to refer to the aforementioned papers.

In this study, split learning is applied in the medical field for the first time to our knowledge. Two
data sets are used: retinal fundus photos and chest X-rays. For these two data sets performance of a
split learning configuration is compared to (1) centrally hosted and (2) non collaborative configura-
tion for a range of number of distributed participants.

2 Related work

The concept of split learning was first introduced by Gupta and Raskar [2018]. In comparisons on
the CIFAR 10 and CIFAR 100 data sets; split learning has shown to outperform federated learn-
ing and LS-SGD in terms of convergence for accuracy and client side computational requirements
Vepakomma et al. [2018a]. In addition, split learning shows improved security by reducing leakage
of information as shown by Vepakomma et al Vepakomma et al. [2017].

The paradigm of split learning revolves around splitting up a conventional neural network into sev-
eral elements that can have different accessibility properties. These elements are ‘links’, that together
form a ‘chain’, making up the full network. The mentioned accessibility properties of these links
can either be ‘central’, which means they are hosted on the central server location and accessible as
black box to all clients, or ‘local’, in which case they can only be accessed by the proprietary client.

U-shaped split learning: Although the configuration could potentially take many forms, a partic-
ular configuration called the U-shaped configuration Gupta and Raskar [2018]; Vepakomma et al.
[2018a] is implemented in this work for its simplicity and suitability for healthcare. This config-
uration requires no raw data sharing as well as no label sharing. The chain in this configuration
consists of three links. As considered from a forward propagation point of view, the first is called
‘front’, and is local. It receives raw input data during forward propagation, and returns an obfuscated
intermediate representation. The second link is called ‘center’ and is centrally hosted. It takes the
intermediate representation from the front, and performs most of the computation to return another
intermediate representation to the final link called ‘back’. The back is again local and performs the
final decoding computation on its input. This local stage is where gradients are computed from the
decoded output and labels. This configuration is visualized in figure 1.

When training the model one or more mini-batches can iteratively be forwarded through the chain
thereby training both the local, as well as the central links. When training is switched from one client
to another, the state of the local links from one clients is downloaded and updated at the next. The
system is not dependant on results from all clients to push an update, which resolves the logistical
challenges in synchronous training methods mentioned earlier.

Typically but not necessarily, the largest part of trainable networks layers can be found in the central
link. This reduces bandwidth used in sharing local states, as well as client side computational cost.
This property allows for computation of more complex networks for clients with less computational
power, compared to federated learning.
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Figure 1: Graphical representation of the U-shaped configuration. Three clients named hospital A,
B and C hold their own data and train a collaborative model without sharing raw data.

3 Methods

3.1 Data collection

We utilized the diabetic retinopathy (DR) dataset as previously described in work by Chang et al
Chang et al. [2018]. This data set originates from the Kaggle Diabetic Retinopathy dataset Kaggle
Inc. [2015] of retinal fundus photos. A subset of 9000 images was used for training and validation to
prevent saturation of learning for models when trained non-collaboratively. The original multi-class
classification problem was simplified to binary classification of ‘normal’ and ‘abnormal’. Images
were downsampled to 256x256 RGB images. For further preprocessing details we refer to Chang et
al Chang et al. [2018].

The second data set used was the large chest X-ray dataset ‘CheXpert’ Irvin et al. [2019]. The data
set consists of 224,316 chest radiographs with labels of 65,240 patients. The problem is posed as
a multi-label classification problem of 14 common chest radiographic observations. Cases where
labels contained uncertainty were excluded according to the baseline approach as described in the
paper. To further decrease the data set size to prevent saturation in non-collaborative setting, some
subsets of images of different shapes that were most commonly occurring (320x390 px) were ex-
cluded. This resulted in a remaining dataset of 156,535 chest radiographs.

Both data sets were partitioned to cohorts of 75% training, and 25% validation data. When the
data sets were further split over multiple clients, training data was split equally. Both partitioning
operations are performed randomly without patients overlapping in both cohorts. Validation data
was not split so as to retain the validation process even when data is split over many clients.

3.2 Neural networks

For the DR dataset an implementation largely influenced by Chang et al Chang et al. [2018] was
employed. A 34-layer residual network (Resnet-34)He et al. [2016] architecture was utilized with
Glorot uniform initialization Glorot and Bengio [2010]. Adam Kingma and Ba [2014] optimization
using standard parameters (β1 = 0.9 and beta2 = 0.999), and default learning rate (10−4) without
decay was used. Data was augmented in real-time using random rotations (0-360 degrees) and 50%
chance of lateral or axial inversion. Loss was computed used a binary cross entropy loss function.
Training was performed on a GeForce GTX TITAN X graphics processing unit until validation
accuracy reached a plateau as defined by not decreasing for more than 30 epochs.

For the CheXpert dataset, the implementation as described by Rajpurkar et al Rajpurkar et al. [2017]
was used. A 121-layer dense network (DenseNet121) Huang et al. [2016] was pretrained on Ima-
geNetDeng et al. [2009]. Loss was defined computed using a combined sigmoid binary cross entropy
loss. Adam optimization using standard parameters (β1 = 0.9 and β2 = 0.999), and default learning
rate (10−4) without decay was used. Batch size used was 24. Data was augmented by 50% chance
of lateral inversion. Models were trained until validation loss reached a plateau as defined by not
decreasing for more than five epochs. The model with the lowest validation loss was used picked.
Training was performed on a Nvidia GeForce GTX 1080 Ti graphics processing unit.
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In collaborative mode, every client sequentially trained the network for one epoch. Whenever train-
ing switched from one client to the next local client states were copied to next client. In non collab-
orative mode, a single client was trained on the same sample size of data as it would have had in the
collaborative setting.

3.3 Performance analysis

Performance of the DR data set is defined as the highest classification accuracy on the validation
set by averaging all clients. For the CheXpert data set, the receiver operating characteristic curves
(ROC) were generated from the validation set, for the model state of the client with lowest loss
across all mini-batches in the epoch achieving the lowest loss. Final result was the average area
under the ROC (AUROC) as shown in Figure 2 across all five competition tasks as defined by the
original study (Atelectasis, cardiomegaly, consolidation, edema and pleural effusion).

4 Results

The performance of split learning based configurations is compared to a non collaborative configu-
rations for the DR data set using accuracy, and CheXpert using the AUROC, in figure 2. As shown in
the figure, the split learning based approaches on both the CheXpert and diabetic retinopathy datasets
performed exceedingly better than performance in non-collaborative settings Irvin et al. [2019]. Ex-
perimental results, including bootstrapping results for the diabetic retinopathy set are given in table
1. On the Chexpert split learning dataset mean performance was significantly (α = 0.005) lower
in non collaborative compared to collaborative setting especially in cases with > 2 clients and two
sample two tailed T-test was also used to compare means to reach this conclusion.

5 Discussion and future work

Distributed machine learning based solutions can provide great benefit to the medical field by en-
hancing seamless collaboration across entities. Split learning has shown benefits compared to alter-
native distributed learning methods. We have applied split learning in the medical field for the first
time and it worked great compared to conventional single and multi-institution setups. Our results
show that teaming up in general can give a great performance boost. Our results show that teaming
up in a distributed learning setting in general can give a great performance boost in comparison to
non-collaboration. In the future we will also compare to federated learning and LS-SGD within the
medical setup. These comparisons have already been made recently in the non-medical settings in
[Gupta and Raskar, 2018; Vepakomma et al., 2017]. We could investigate alternative weight transfer

Table 1: Performance for diabetic retinopathy

Split learning Non collaborative
number of clients b mean (C.I.) mean (C.I.)

1 0.888 (0.896, 0.880) 0.869 (0.877, 0.861)
2 0.850 (0.857, 0.843) 0.852 (0.865, 0.839)
3 0.868 (0.875, 0.861) 0.753 (0.766, 0.742)
4 0.884 (0.891, 0.878) 0.754 (0.770, 0.739)
5 0.869 (0.877, 0.861) 0.755 (0.772, 0.738)
8 0.887 (0.894, 0.880) 0.717 (0.733, 0.701)
10 0.858 (0.868, 0.849) 0.676 (0.695, 0.657)
15 0.838 (0.848, 0.829) 0.627 (0.649, 0.603)
20 0.860 (0.868, 0.852) 0.613 (0.632, 0.594)
25 0.850 (0.858, 0.841) 0.607 (0.627, 0.588)
30 0.814 (0.831, 0.797) 0.620 (0.648, 0.590)
35 0.798 (0.819, 0.780) 0.633 (0.656, 0.611)
40 0.852 (0.859, 0.844) 0.595 (0.619, 0.568)
45 0.883 (0.891, 0.876) 0.608 (0.634, 0.581)
50 0.859 (0.869, 0.849) 0.588 (0.611, 0.565)
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Figure 2: Performance of non collaborative (gray) and split learning (black) configurations. Number
of clients refers to the number of clients the data was divided over. As the total amount of data
remained constant, this directly relates to each client’s sample size.

protocols to aim to improve efficiency. We also plan to investigate privacy enhancements and alter-
native configurations in Vepakomma et al. [2018a] for healthcare settings via controlled real-world
healthcare deployments.
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