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ABSTRACT  

In Dynamic Contrast-Enhanced MRI (DCE-MRI) of the liver, a series of images is acquired over a period of 20 minutes. 
Due to the patient’s breathing, the liver is subject to a substantial displacement between acquisitions. Furthermore, due to 
its location in the abdomen, the liver also undergoes marked deformation. The large deformations combined with 
variation in image contrast make accurate liver registration challenging.  

We present a registration framework that incorporates a liver segmentation to improve the registration accuracy. The 
segmented liver serves as region-of-interest to our in-house developed registration method called ALOST  
(autocorrelation of local image structure). ALOST is a continuous optimization method that uses local phase features to 
overcome space-variant intensity distortions. The proposed framework can confine the solution field to the liver and 
allow for ALOST to obtain a more accurate solution. For the segmentation part, we use a level-set method to delineate 
the liver in a so-called contrast enhancement map. This map is obtained by computing the difference between the last and 
registered first volume from the DCE series. Subsequently, we slightly dilate the segmentation, and apply it as the mask 
to the other DCE-MRI volumes during registration. It is shown that the registration result becomes more accurate 
compared with the original ALOST approach. 
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1. INTRODUCTION  

Dynamic Contrast-Enhanced MRI (DCE-MRI) is widely used to investigate the functioning of many organs. Important 
parameters quantifying the capillary permeability can be extracted from the time intensity data using pharmacokinetic 
models. However, DCE-MRI of the abdomen is hindered by motion due to breathing, and the resulting dynamic images 
are not aligned to each other. Many algorithms have been proposed to solve similar registration problems, e.g. based on 
normalized mutual information (NMI)1 and the modality independent neighborhood descriptor (MIND)2. However, the 
outcome of these general approaches on DCE images can be inaccurate due to large spatial deformations and variations 
in the image contrast due to the inflow of contrast agent. A registration method called autocorrelation of local image 
structure metric (ALOST)3 has been shown to efficiently deal with contrast variations. Still, the problem remains 
challenging due to the large magnitude of prevalent deformations.  

In this paper, the focus is on liver imaging. We introduce an explicit segmentation of the organ into the ALOST 
technique, in order to emphasize our region of interest during registration. The segmentation is obtained by applying a 
level-set method to a so-called contrast enhancement map. We will show that the initial segmentation improves the 
registration precision by restricting the search space. 

In this paper we first briefly introduce the registration method ALOST, the liver segmentation method and a model for 
determining the intracellular uptake rate of the contrast agent. Subsequently, we evaluate the liver mask extraction 
method and evaluate the registration performance of the proposed framework compared to the original ALOST approach. 
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2. METHODOLOGY 

2.1 Registration by autocorrelation of local image structure (ALOST) 

The modality independent neighborhood descriptor (MIND) method2 is a state-of-the-art registration technique for multi-
modal image registration. Essentially, it relies on a patch-based descriptor of the structure in a local neighborhood: 
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in which I is an image, r	 is an offset in	 neighborhood R of size R×R around position x and n a normalization constant; Dp 
is the distance between two image patches, measured by the sum of squared differences (SSD): 
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and V(I, x) is the mean of the patch distances in a small neighborhood N: 
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Recently, we have introduced a novel registration metric that relies on the monogenic signal4. The monogenic signal is a 
generalization of the so-called analytic signal from one to higher dimensions based on the Riesz transform. The analytic 
representation of a signal applies the concept that negative frequency components of a 1-D, real-valued signal are 
essentially superfluous due to the Hermitian symmetry of the Fourier Spectrum. 

The monogenic signal is an efficient tool to describe the local image structure by means of local phase. Particularly, the 
mean phase (MP), i.e. the average phase calculated over several scales, serves as an identifier for the type of image 
feature. For example, a step corresponds to  = 0 and a peak to = . Furthermore, it has been recognized that salient 
features are perceived at points in an image where the Fourier components are in phase. Several measures for phase 
congruency5 (PC) have been developed expressing that if all scale components are in phase, PC = 1; alternatively, if 
there is no coherence of phase, then PC = 0. 

The mean phase and phase congruency extracted from the monogenic signal share the same advantage that they are 
insensitive to space-variant intensity distortions, e.g. the intensity difference due to contrast enhancement and the MRI 
bias field. This ability is what the MIND approach lacks3. Therefore, we have integrated MP and PC into MIND to 
extract local image information into a descriptor called ALOST3: 

        , , , , , , ,ALOST I MIND MP I MIND PC I   x r x r x r   (4) 

Essentially, the registration is performed by minimizing the next energy function 

      ALOST RE E E w w w   (5) 

where  is a weighting coefficient that balances the two terms of our energy function: 

1. Data term 
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2. Regularization term 
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where w = [u,v,w] is the 3D deformation field. More details on the ALOST approach can be found in 3.  

In our DCE-MRI scan, the total imaging time was approximately 20 minutes (more details are given below). During 
imaging, we let the patient hold his/her breath, especially around the time when the contrast agent arrived in the liver. 
We did this to limit images distortion by intra-scan motion, as these images are crucial for accurate pharmacokinetic 
imaging. However, we have observed that these images show large distortions compared to images acquired during 
regular breathing, i.e. acquired at the beginning and the end of the DCE series. 

As ALOST could not cope with such distortion, we restrict the search space of the registration by suing a prior 
segmentation of the liver as a region of interest. 

2.2 Segmentation 

The liver shows the strongest contrast enhancement at the end of the DCE series. This is generally termed the hepatic 
phase, as the uptake rate of the contrast agent into the liver cells reaches its maximum at that time. Accordingly, 
subtraction of the registered first volume from the last volume yields an image in which the liver is maximally 
“enhanced”, whereas other organs are suppressed: 

 liver post preCE I I  .  (8) 

Notice that the shape and location of the liver are more or less the same in the two images since the patient is breathing 
rather shallowly at the very beginning and at the end of the DCE series. Therefore, good registration accuracy can be 
achieved by applying ALOST even without a mask.  

In the CEliver map, the liver is very clearly visible (e.g. Figure 2(d)). We use a level-set method to segment the liver in 
order to obtain the mask. Among several level-set methods, the geodesic6 and the Chan-Vese7 models are the 
benchmarks with respect to boundary- and region-based methods. The hybrid method proposed by Y. Zhang et al.8 takes 
boundary as well as region information into consideration while minimizing the next data term: 

 E     I   H  d
   g H   d

   (9) 

where I is the image, g represents the gradient of the image,  is a weighting coefficient, H() is the Heaviside function, 
and  is a parameter that represents the lower bound of the gray-level in the segmented object. Essentially, the first term 
integrates the (negated) intensity inside the segmented region and the second term integrates the derivative along the 
boundary of the segmented region.  

When the liver mask Mliver has been extracted, we dilate it somewhat ( dilated
liverM ) to make sure that the liver boundary is 

included in the mask in most images. 

In summary, our approach reduces to the following steps: (1) we register the first volume to the last one, and calculate 
the contrast enhancement via (8); (2) we segment the liver in the CEliver map and obtain the mask; (3) we dilate the mask 
somewhat, so that the boundary of the liver is included in the mask (i.e. the most salient information); (4) we apply the 
dilated mask to the entire image series, while optimizing equation (5). As such, equation (5) is only evaluated over the a 
priori segmented region. We do so while registering the entire DCE series to the last image since that image shows the 
largest contrast and has been acquired during shallow breathing. 

2.3 Modeled signal in the liver 

In order to evaluate the benefit of our approach we will fit a model to the time-intensity signal in the segmented region. 
The residual of the fit will be considered a measure of the registration accuracy. Therefore, we adopt the liver model 
proposed by S. Sourbron et al.9, henceforth referred to as “the Sourbron model”. This dual-inlets two-compartment 
uptake model was especially designed for the intracellular hepatobiliary contrast agent Gadoxetate disodium 
(PrimovistTM , Bayer pharmaceutical). The diagram in Figure 1 sketches the model. The arterial input function (AIF) and 
venous input function (VIF) are the dual inlets since blood is supplied to the liver by the hepatic artery as well as the 
portal vein. The AIF and VIF represent the contrast agent concentration in the blood plasma of the hepatic artery and 
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portal vein respectively. These were obtained by averaging the top three time intensity curves having the highest contrast 
enhancement measured voxel-wise in regions manually delineated in the aorta (cranially from the hepatic artery) and the 
portal vein. TA and TV represent time delays and FA and FV are constants representing the volume transfer rates from the 
plasma compartments into the extravascular, extracellular space. Furthermore, in the gray rectangle denoting liver tissue, 
the left circle represents the extravascular, extracellular compartment and the right circle stands for the extravascular 
intracellular compartment, i.e. corresponding to the hepatocytes. As such, VE is the extravascular, extracellular volume 
and KI represents the uptake rate of the hepatocytes represented by a volume VI. 

 

Figure 1. The Sourbron model: a dual-inlets two-compartment uptake model for Primovist in the liver. The AIF and VIF are 
dual inlets into the liver, representing the concentration of the contrast agent over time entering from the hepatic artery and 
the portal vein. TA and TV are time delays. FA and FV are the arterial and venous plasma flows, respectively (in milliliters per 
minute per 100 mL). In the gray rectangle representing the liver, the left circle represents the extravascular extracellular 
compartment VE (in milliliters per 100 mL) and the right circle stands for the hepatocyte compartment. KI (per minute) is the 
liver uptake rate. 

 
Let CE and CI be the contrast agent concentrations in the extravascular, extracellular compartment and hepatocytes, 
respectively.  Defining CA and CV as the concentrations of the AIF and VIF, the mass transport between the two 
compartments can be expressed as 
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and the solution for the total liver tissue concentration (CT = VECE + VICI) is 
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where * is the convolution operator. 

3. RESULTS 

DCE-MRI data were acquired from 8 patients on a 3T Philips scanner via a 3D SPGR sequence. The acquisition 
parameter settings were TE/TR = 2.3/3.75 ms, FA = 15°, matrix size = 128×128×44, voxel size = 3×3×5 mm3, 
acquisition time = 2.141 s for each volume; the sampling interval (between images) was 2.141 s for volumes 1-81, 30 s 
for volumes 82-98 and 60 s for volumes 99-108. The total imaging time was approximately 20 minutes. Patients held 
their breath during the acquisition of volumes 13-22, 33-42, 61-70 and 79-108. 

Exemplary pre-contrast and post-contrast images are shown in Figure 2 (a) and (b), respectively. Obviously, the liver is 
highly enhanced in the post-contrast image. Figure 2(c) is the outcome of registering (a) to (b) by ALOST without 
applying a mask. Actually, in (a) and (c) the location and shape of the liver are almost the same since the patients 
breathed quietly at the very beginning and at the end of the acquisition series. Figure 2(d) is the CEliver map, which is 
calculated by (8). In this image, the liver is highlighted while the other organs in the abdomen display a very low 
intensity. 
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                          (a)                                                 (b)                                                (c)                                                (d) 

Figure 2. (a) Pre-contrast image (the first volume); (b) post-contrast image (the last volume); (c) the registered image of (a) 
by ALOST without liver mask; (d) the CEliver map 

Figure 3 and Figure 4 show the 3D liver mask (i.e. the segmentation) and 2D cross-sections of the mask boundary 
overlaid on the CEliver map. Clearly, the mask matches the liver very well. 

    
                          (a)                                               (b)                                                       (c)                                                (d) 

Figure 3. 3D mask (segmentation) of the liver. (a) 3D view; (b) the front view; (c) the top view; (d) the right side view. 

       
                           (a)                                                (b)                                                (c)                                                (d) 

Figure 4. Overlay of CEliver map and the liver mask’s boundary. (a) slice 36; (b) slice 31; (c) slice 27; (d) slice 21. 

       
                           (a)                                                (b)                                                (c)                                                (d) 

Figure 5. (a) moving image; (b) registered image by ALOST alone; (c) registered image by ALOST supported by 
the dilated liver mask; (d) fixed image 
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The registration improvement by application of a mask is illustrated in Figure 5. The moving image and the fixed image 
are shown in Figure 5(a) and (d), respectively. We also drew the outline of the liver mask in figure (d) and copied it to 
the other sub figures to facilitate the comparison. The registration result obtained by ALOST alone can be seen in Figure 
5(b). Compared with the moving image, the liver in Figure 5(b) is more similar to Figure 5(d), but near the bottom of the 
liver mask, the mismatch, indicated by the red arrow, shows that the registration is still off. Figure 5(c) shows that 
ALOST supported by the dilated liver mask produces a more accurate registration outcome. 

Furthermore, we chose another slice and selected a line segment through the liver to investigate the intensity as a 
function of time, see Figure 6(a). In Figure 6 (b)-(d) the edge of the dilated liver mask is also drawn for reference. Large 
fluctuations can be observed over time along this line prior to registration, see Figure 6(b). Most of the fluctuations are 
compensated by ALOST, see Figure 6(c), but some mismatches are still visible. The most accurate outcome is generated 
by ALOST supported by the dilated liver mask, as demonstrated in Figure 6(d).  

       
                              (a)                                                  (b)                                               (c)                                              (d) 

Figure 6. (a) Transverse plane of slice 34. (b)-(d) Intensity as a function of time along the red line: (b) raw DCE data (prior 
to registration); (c) ALOST registration without the dilated liver mask; (d) ALOST registration with the dilated liver mask. 
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                                      (a)                                                       (b)                                                       (c) 

Figure 7. RMSE of fitting the liver model function to the intensity data from each pixel: (a) raw DCE data; (b) ALOST data 
without the dilated liver mask; (c) ALOST data with the dilated liver mask. 

Figure 7 shows the distribution of the root mean square error (RMSE) that remains after fitting the Sourbron model to the 
time intensity curves (TICs). One can see that the RMSE is huge when no registration is performed, see Figure 7(a). In 
Figure 7(b), produced by ALOST registration without the liver mask, the RMSE is only large near the boundary of the 
liver, where there is large fluctuation in signal intensity due to mis-registration. The smallest RMSE is provided by 
ALOST registration supported by the dilated liver mask, see Figure 7(c). Notice that the RMSE is especially reduced 
near the edge of the liver.  

Henceforth, we focus on investigating the registration performance near the liver boundary. Therefore, the liver mask 
was eroded by a 26-connected 3x3x3 kernel and then subtracted from the original liver mask. As a result, a mask is 
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obtained of the liver boundary. Figure 8 shows how the RMSE measure varies at the boundary of liver in the first patient 
prior to registration and after registration without and with support of the dilated liver mask. 

0

0.05

0.1

0.15

0.2

0.25

DCE raw ALOST wihtout Mask ALOST with mask

R
M

S
E

 

Figure 8. Box-and-whisker plots of the root mean squared error (RMSE) of the model fits at the liver boundary prior to 
registration (DCE raw) and after registration without and with support of the dilated liver mask. 

Table 1.  Evaluation of the registration performance on 8 abdominal DCE-MRI datasets by ALOST without and with the 
support of the dilated liver mask. The performance was measured by the RMSE that remains after fitting the Sourbron 
model to TICs near the liver boundary. The numbers report the mean value and the standard deviation (std) between 
brackets. The numbers printed in boldface are the best result per row. 

DCE raw ALOST without Mask ALOST with Mask 

Patient 1 0.0643 (0.0607) 0.0248 (0.0116) 0.0228 (0.0075) 

Patient 2 0.0361 (0.0254) 0.0230 (0.0114) 0.0215 (0.0083) 

Patient 3 0.0326 (0.0191) 0.0289 (0.0163) 0.0282 (0.0141) 

Patient 4 0.0570 (0.0352) 0.0518 (0.0263) 0.0484 (0.0214) 

Patient 5 0.0366 (0.0171) 0.0289 (0.0139) 0.0276 (0.0116) 

Patient 6 0.0676 (0.0557) 0.0367 (0.0191) 0.0313 (0.0132) 

Patient 7 0.0445 (0.0317) 0.0299 (0.0178) 0.0272 (0.0129) 

Patient 8 0.0573 (0.0444) 0.0324 (0.0186) 0.0302 (0.0141) 

 

Figure 8 shows the distribution of the RMSE at the liver boundary. Apparently, ALOST with support of the dilated liver 
mask achieves the smallest RMSE value and standard deviation. The same approach applied to all 8 patients yields the 
outcomes shown in table 1. It demonstrates that ALOST with support of the dilated liver mask achieves the best 
registration accuracy. 

4. CONCLUSION 

The framework proposed by us integrates a liver segmentation into the ALOST registration framework. This 
segmentation method was based on the so-called contrast enhancement map. The prior segmentation supports ALOST by 
restricting the search space. The improved registration was demonstrated by better fits of the Sourbron model to the time 
intensity data after registration. The proposed framework can be easily adapted to other DCE-MRI applications with 
different contrast agents provided that a segmentation of the organ of interest is available. 
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