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A B S T R A C T

The biological mechanisms of aging have been studied in depth and prominent findings in this field promote the
development of new therapies for age-associated disorders. Various model organisms are used for research on
aging; among these, the nematode Caenorhabditis elegans has been widely used and has provided valuable
knowledge in determining the regulatory mechanisms driving the aging process. Many genes involved in lifespan
regulation are associated with metabolic pathways and are influenced by genetic and environmental factors. In
line with this, C. elegans provides a promising platform to study such gene by environment interactions, in either
a reverse or forward genetics approach. In this review, we discuss longevity mechanisms related to metabolic
networks that have been discovered in C. elegans. We also highlight the use of wild populations to study the
complex genetic basis of natural variation for quantitative traits that mediate longevity.

1. Introduction

In the last few decades, many studies have focused on determining
the biological causes of aging. Because aging is the major risk factor for
many diseases, understanding the underlying mechanisms promotes the
development of new therapies for age-related diseases [1]. At the
frontier of this field, a number of model organisms have offered vast
amounts of knowledge that have helped us discover regulatory me-
chanisms of aging [1]. Nine hallmarks were summarized as chief con-
tributors to the aging process including: (1) genomic instability, (2)
telomere attrition, (3) epigenetic alterations, (4) loss of proteostasis, (5)
deregulated nutrient sensing, (6) mitochondrial dysfunction, (7) cel-
lular senescence, (8) stem cell exhaustion, and (9) altered intercellular
communication [2].

A major challenge is to what degree discoveries made in non-human
model organisms can be translated to humans [3]. Even though this
remains a pressing problem in the aging field, most findings at the
molecular level of aging are highly conserved across species. Particu-
larly, a number of aging-regulating factors have been elucidated at both
the genetic and environmental level [4]. Manipulation of these often
conserved regulators of aging is sufficient to prolong lifespan in evo-
lutionarily diverse organisms, including yeast, worms, flies, mice, non-
human primates, and human beings [3,5].

The nematode Caenorhabditis elegans has been extensively used in
aging studies and has provided a wealth of information about the mo-
lecular and regulatory mechanisms of aging [6]. About half a century
ago, C. elegans was popularized by Sydney Brenner and introduced as a
model for genetic studies [7]. C. elegans is a small (1 mm), free-living
nematode and exists primarily as a self-fertilizing hermaphrodite,
which can be easily maintained in laboratory conditions on regular agar
plates and fed with a bacterial food source. Under favorable growth
condition, C. elegans have a rapid life cycle and can develop from fer-
tilized eggs to become an adult worm through four larval phases (larval
phase L1-L4) within three days [8]. Comparing to other lab animals, the
adult worms have a relative short lifespan of two to four weeks. When
the environment condition is less favorable for growth and reproduc-
tion, development of C. elegans is arrested and these progenies can
develop to “dauer” larvae after L1 phase. Dauers can survive harsh
environmental conditions for more than three months, and they can
resume development and molt to the L4 phase when growth condition
become suitable [9]. C. elegans has highly differentiated tissues in-
cluding neurons, gonad, intestine, muscle, and cuticle tissue. Some of
the advantages C. elegans offers over other model systems are its
transparency, the post-mitotic state of the adults, and the relatively
short lifespan of two to four weeks, which enables researchers to ra-
pidly assess the effects of different mutations and treatments on
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lifespan. In addition, this model system allows researchers to dissect
tissue- and compartment-specific effects. Furthermore, the genome of C.
elegans is fully sequenced [10] and RNA interference and genome
editing through CRISPR/Cas9 are readily available [11,12].

C. elegans has proven itself to be one of the most versatile model
organisms for the elucidation of molecular pathways implicated in
human diseases and aging [13]. Many important findings in funda-
mental biology and the medical field were first achieved in C. elegans,
suggesting that molecular mechanisms and signaling pathways are
conserved between mammals and worms [14]. Subsequent comparison
between human and worm genomes have indeed confirmed the con-
servation of human disease genes and pathways in C. elegans [10,14].
Aging in C. elegans is entirely post-mitotic, reflecting the gradual loss of
function in somatic cells as they grow old. Many studies in C. elegans
have shown that metabolic networks affect aging [15,16]. As early as
1993, daf-2, which encodes the insulin/insulin-like growth factor 1
(IGF-1) receptor, was discovered as a major regulator of aging in C.
elegans [17]. Since then, numerous genetic modifiers have been dis-
covered in worm models that play essential roles in modulating the
aging process (for a review, see [18]). In addition to aging somatic cells,
the gonad (germline cells and somatic gonad) plays an essential role in
regulating lifespan in C. elegans [18]. Worms with a germline cell
proliferation deficiency, such as glp-1 mutants, have an increased life-
span [18,19]. Several endocrine signaling pathways mediate lifespan
extension in worms without germlines, such as hormone receptor DAF-
12 and transcription factor DAF-16 [18].

In this review, we summarize the current knowledge from forward
and reverse genetic aging studies that were pioneered with the use of C.
elegans as a model system. We focus on two hallmarks of aging related
to metabolic regulatory networks, namely deregulated nutrient sensing

and mitochondrial dysfunction (Fig. 1). In addition, we discuss the
application of quantitative trait loci (QTL) mapping, which allows us to
analyze how population-based genetic variation impacts age-related
phenotypes in the C. elegans model. This systems genetics approach
opens up novel avenues for generating new hypotheses related to the
response to dietary interventions and gene by environment (G × E)
interactions that associate with aging.

2. Metabolic control of aging

2.1. The insulin/IGF-1 signaling pathway

During the aging process, distinct metabolic signaling pathways
become less responsive to nutritional cues [20]. Among them, the in-
sulin/IGF-1 signaling (IIS) pathway is likely the best studied longevity
pathway, and its regulatory role during aging has been demonstrated in
multiple model species and human beings [21]. The genetic and bio-
logical characteristics of the IIS pathway involved in aging were first
discovered in C. elegans and subsequently successfully translated to
more complex model organisms and humans [21]. Insulin and insulin-
like peptides are major regulators of development, growth, and body
size in most organisms, and the genes regulating these pathways are
conserved across the evolutionary range. In worms, the insulin receptor
modulates development and growth in response to environmental sti-
muli and nutrients [3]. In C. elegans, the IIS pathway was first dis-
covered with the loss-of-function mutations of age-1 and daf-2, which
encode phosphatidylinositol-3-kinase (PI3K) and insulin/IGF-1 receptor
(IGFR), respectively [22]. Mutations in either of these two key IIS
regulators almost doubled lifespan compared to wild-type worms and
this prolonged lifespan phenotype was dependent on the FOXO-family

Fig. 1. Metabolic hallmarks associated with regulation
of aging. Two essential hallmarks of aging include
deregulated nutrient sensing (left) and mitochondrial
dysfunction (right). The key regulators of these two
hallmarks and their related pathways are indicated in
the outer ring.
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transcription factor daf-16 [17,21]. In worms harboring the daf-2 mu-
tation, low IIS activity leads to translocation of DAF-16 into the nu-
cleus, where it binds and initiates the expression of target genes that
prolong worm lifespan and initiate stress protective mechanisms, such
as the unfolded protein response and oxidative stress responses [23].

A number of population studies have reported the strong association
between FOXO expression and lifespan expectancy in humans [23]. One
study in a population of long-lived American men of Japanese ancestry
showed that single nucleotide polymorphisms (SNPs) in the FOXO3A
gene are associated with longevity and a reduced risk of cardiovascular
disease [23,24]. Other studies show the positive association of SNPs
from FOXO3A genes with longevity of Southern Italian male cen-
tenarians and confirmed these results in both German centenarians/
nonagenarians and in the Danish population [5,23,25,26]. Because of
this correlation, FOXO is being considered as a promising therapeutic
target to promote human health and longevity [23].

2.2. Caloric restriction-mediated longevity

Restricting food intake, i.e., caloric restriction (CR), was introduced
as a means to intervene with the aging process in rodents [27]. Limited
intake of all dietary constituents except vitamins and minerals promotes
healthy aging in both rat and mouse models [28,29]. Although the
health benefits of CR have been demonstrated in different species across
a wide evolutionary range, from budding yeast to primates and human
beings, the mechanisms mediating CR-induced lifespan extension have
not yet been fully elucidated [28]. To date, CR is known to trigger a set
of regulatory processes that track the functions of proteins and sense
nutrient demands and alterations [28]. This in turn initiates appro-
priate biological responses to these changes and maintains energy
homeostasis.

In C. elegans, CR increases the expression of a number of proteins
that mediate anti-aging effects. The most prominent and well-studied
among these include: (1) DAF-16/FOXO, (2) AAK-2/AMPK, (3) the
nutrient sensor target of rapamycin kinase (mTOR), (4) the NAD-de-
pendent deacetylase SIR-2.1/SIRT1, and (5) transcription factors such
as the NF-E2-related factor SKN-1/Nrf and the FoxA subfamily of
forkhead box (PHA-4/FoxA) proteins [30–35]. Worms cultured under a
CR condition show lifespan extension and at the cellular level a re-
duction in oxidative damage, attenuated protein synthesis, and a
slowed, age-related decline of DNA repair [28].

CR can increase lifespan in different ways in C. elegans [36]. For
instance, worms fed a diluted bacterial food in liquid media have an
increased lifespan [37,38]. In addition, several eat mutants are used to
mimic CR as they have a dysfunctional pharynx, which slows down
food intake [39]. Of these, eat-2 mutants have the most prominent in-
crease in lifespan [18]. Although 14 out of 17 eat mutants have in-
creased mean and maximal lifespan, the correlation between the eat
mutants and lifespan extension in C. elegans may be more complex than
CR alone [4,40]. Namely, many of the eat mutants have additional
phenotypes affecting the nervous system [40].

Several studies have shown a down-regulation of DAF-2 under
certain CR regimens, which in turn triggers translocation of DAF-16 to
the nucleus to activate expression of genes related to longevity and
stress response. This suggests that DAF-16 partially mediates the anti-
aging effect related to particular CR regimens [36]. DAF-16, however, is
dispensable for longevity mediated by chronic CR (e.g. in the eat-2
mutant), and is necessary for the longevity mediated by CR in middle-
aged organisms. DAF-16 is also necessary for intermittent fasting-
mediated longevity although not for continuous fasting-mediated
longevity [18]. These findings suggest that DAF-16-mediated longevity
occurs under particular circumstances with specific stimuli, as well as
under specific timing or durations of the exposure to that stimulus [18].

2.3. The sirtuin family

One of the first genes found to be involved in CR-induced longevity
was Sir2 in yeast [41]. Yeast cells with a Sir2 mutation have shortened
lifespans, whereas ectopic expression of Sir2 increased the lifespan in
wild type mother yeast cells [41]. The role of Sir2 in yeast longevity was
associated with the accumulation of extrachromosomal rDNA circles in
the nucleus, which is considered as one of the causes of replicative
aging in yeast [42]. In C. elegans, overexpression of the Sir2 homolog,
sir-2.1, increases worm lifespan in a DAF-16 dependent manner [43],
although this was later contested [44]. SIR-2.1 binds to 14-3-3 proteins
to activate DAF-16/FOXO in response to heat and oxidative stress and
enhance DAF-16/FOXO activation [18,32,33]. Worms harboring a sir-
2.1 mutation show a clear block of lifespan extension, verifying that
sirtuins have a positive role in the regulation of longevity [18]. The
lifespan extension in sir-2.1 over-expressing animals under CR (e.g. eat-
2 mutant) does not increase further, suggesting that sir-2.1 plays a role
in CR-induced longevity and does so via a similar mechanism as in the
eat-2mutant [45]. However, sir-2.1 does not seem necessary for lifespan
extension induced by fasting and CR in middle-aged animal models,
suggesting that sirtuins regulate longevity under particular conditions
of CR [18].

In the past decade, pharmaceuticals and small chemical compounds
that alter the catalytic activity of sirtuins have been studied for their
beneficial influence on aging [46]. Resveratrol, a polyphenolic com-
pound purified from grapes was reported to trigger the enzymatic ac-
tivity of mammalian SIRT1 and yeast Sir2p. In C. elegans, supple-
mentation of resveratrol to the culture medium extends worm lifespan
through upregulation of sir-2.1, albeit independent of daf-16 [46].
However, the beneficial effects of resveratrol are still under debate, as
resveratrol-mediated longevity in worms and flies is rather mild [47].
Supplementation of NAD+ precursors, such as nicotinamide (NAM) and
nicotinamide riboside (NR) or an inhibitor of poly(ADP-ribose) poly-
merase (PARP) activity—the major NAD+ consumer—increases in-
tracellular levels of NAD+ in worms, and consequently prolongs worm
lifespan in a sir-2.1-dependent manner [48].

2.4. AMPK signaling pathway

AMP-activated protein kinase (AMPK) is another crucial metabolic
energy sensor that links nutrient availability to lifespan [49]. When
activated by a drop in energy status, AMPK binds AMP or ADP and
promotes ATP production. Upon activation, AMPK binds and phos-
phorylates a set of transcriptional (co)activators, including PGC-1α,
FOXO, and SIRT1, and the actions of AMPK activation at least partially
overlap with sirtuin activation [29]. This suggests that AMPK is a cri-
tical regulator of metabolic pathways that increase energy supplies and
decrease energy demands [50]. In worms and flies, activation of AMPK
and its downstream metabolic targets often relies on the level of CR and
the composition of the restricted diets [36,50].

The AMPK encoding gene in C. elegans is aak-2. Worms show a
shortened lifespan if aak-2 is mutated, or extended lifespan if aak-2 is
overexpressed [51]. Similar to the mechanism in the mammalian
system, AAK-2-mediated longevity requires downregulation of the IIS
pathway and subsequent upregulation and translocation of DAF-16/
FOXO [51].

Metformin is an AMPK agonist that is widely used to treat type II
diabetes (T2DM) [52]. Many studies in mice have shown that met-
formin promotes healthspan or lifespan via AMPK [53]. Beneficial ef-
fects on metabolism include decreased low-density lipoprotein and
plasma cholesterol levels, and improved physical activity [20,53,54]. A
long-term treatment with a low dose of metformin in mice enhanced
AMPK activity and increased antioxidant protection, and consequently
resulted in reduced oxidative damage and inflammation [53,54]. Met-
formin also affects the folate cycle by increasing 5-methyl-THF levels
and decreasing the levels of other folates [55]. Additionally, metformin
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also changes methionine metabolism in the E. coli strain OP50, and C.
elegans fed such a metformin-treated bacterial diet showed a decreased
level of methionine which in turn led to a prolonged lifespan [20].
Collectively, it is clear that the health benefits of metformin could be
applied as a potential treatment for aging and age-related metabolic
disorders. The first human clinical trial with metformin treatment—-
targeting aging with metformin (TAME)—has recently been launched
to study if and how metformin delays the onset of age-related disorders
[56].

2.5. mTOR signaling

Another critical pathway linking nutrient availability and metabo-
lism to longevity is the mTOR pathway. This pathway is activated upon
an increase of intracellular amino acids or during growth factor sti-
mulation, and modulates a set of downstream signaling pathways that
manage cell proliferation, cell growth, motility, survival, and protein
synthesis [16,18]. This suggests that inhibiting the mTOR pathway
could mimic nutrient restricted conditions, which may in turn result in
beneficial health and aging effects [18].

In line with this hypothesis, studies in C. elegans showed that in-
hibition of mTOR activity prolonged worm lifespan [57–59]. Longevity
mediated by inhibiting the mTOR pathway is likely distinct from the IIS
pathway [60]. Mutation of rsks-1—homolog of the mTOR target S6
kinase in C. elegans—in combination with a deficiency of daf-2 resulted
in an additive lifespan extension [60]. In contrast, inhibition of mTOR
by a mutation of let-363 (the worm TOR orthologue) in daf-2 mutants
did not show an additive lifespan extension, suggesting an overlapping
mechanism between these two pathways [58]. As the daf-2 mutants
used in these studies were not fully deficient, interpretation of the re-
sults from these experiments is rather difficult [57]. It is likely that
multiple signaling pathways extend lifespan in a coordinated fashion
and get triggered in different and specific situations [57]. One possible
downstream pathway that serves as a shared longevity mechanism
between IIS and mTOR is autophagy [57]. Upon inactivation of TOR
signaling, lifespan extension was not only mediated in a DAF-16/FOXO-
dependent manner, but also by the transcription factor PHA-4/FoxA,
which is a key regulator of autophagy and longevity in C. elegans [61].
Recent studies have shown that CR-mediated longevity is coupled with
inhibition of mTOR activity and is mediated by enhancing PHA-4 ex-
pression in C. elegans [18].

Lowering methionine level suppresses mTOR pathway activity and
prolongs lifespan, suggesting that such diets can influence the aging
process [55,62–64]. An alternative strategy to inhibit mTOR involves
the drug rapamycin. Rapamycin was discovered in a soil bacterium on
Easter Island, and was selected as a promising compound by the in-
tervention testing program (ITP) at the US National Institute of Aging
for prevention of age-associated disorders [64]. Rapamycin increases
lifespan in both worms and mice, although the activated downstream
pathways mediating this longevity are different between species [59].

2.6. Mitochondrial dysfunction and stress responses

To survive in an unfavorable environment or under physiological
stress, animals must induce stress-responsive pathways to protect
themselves against any harmful effects, and these pathways are im-
portant in metabolic diseases and aging [65]. Many stress response
pathways are highly conserved between species [66]. Studies on stress
responses in C. elegans have shown detailed insights into molecular
mechanisms underlying aging and age-related diseases. Multiple types
of stress can be studied in C. elegans, including oxidative stress, heat
shock, hypoxia, and osmotic stress. Additional stress responses that
increase lifespan in C. elegans include the mitochondrial unfolded pro-
tein response (UPRmt), the ER stress response and response to heat
shock [48,66]. These mechanisms are also involved in age-related dis-
eases, such as Alzheimer's and Parkinson's disease and cancer [66].

During the last few decades, most stress-related aging research has
revolved around the “free radical theory of aging” [67]. It suggests that
aging is a consequence of stochastic accumulation of global cellular
oxidative damage, which can be caused by both intrinsic and en-
vironmental factors [67]. In general, when cells and animals age, re-
spiratory chain function declines, which results in increased electron
leakage, reduced ATP production, and augmented reactive oxygen
species (ROS) production [2]. One of the primary compartments that
therefore accumulates ROS damage is mitochondria. ROS trigger a set
of oxidative stress-response mechanisms, such as increased expression
of antioxidant enzymes, to prevent damage accumulation. During
aging, such defense mechanisms wane and the coinciding accumulation
of ROS causes mitochondrial dysfunction and disrupts cellular home-
ostasis [68].

Although the damaging properties of ROS are undeniable, ROS are
now also considered important signaling molecules that can influence
metabolism and lifespan. The intensity or duration of ROS production
determines the biological outcome through redox-dependent signal
transduction. For example, metabolic adaptations which take place
during temporary hypoxia or with changes in glucose metabolism are
triggered by low amounts of ROS. Moderate levels of ROS can trigger
inflammatory mediators, and finally, high levels of ROS can induce
autophagy or apoptosis pathways incurring cell death [69]. The type of
ROS produced and the compartmentalization of the generated ROS are
important factors that regulate distinct biological outcomes: increased
mitochondrial ROS mediate lifespan extension, while increased cyto-
plasmic ROS shortens lifespan in C. elegans [68]. In addition, worms
treated chronically with the herbicide paraquat, a chemical that is used
to increase ROS production in the mitochondrial matrix at the site of
complex I [70], show a dose-dependent effect on lifespan [71]. A high
dose of paraquat significantly shortens worm lifespan (e.g. 4 mM) and a
lower dose prolongs lifespan (e.g. 0.1 mM) [71,72]. Therefore, a low
increase in mitochondrial ROS can trigger adaptive responses, culmi-
nating in stress resistance and increased longevity in a process known as
mitohormesis [73].

Although disturbed mitochondrial function is often central to many
metabolic and age-related diseases in humans, in some model organ-
isms perturbations of mitochondrial function can extend lifespan
[74,75]. The extended lifespan of C. elegans with deficient oxidative
phosphorylation (OXPHOS) depends on the hypoxia-inducible tran-
scription factor HIF-1, the worm orthologue of the mammalian HIF-1α,
which is activated by a mild increase in ROS [71]. In this way, HIF-1
links respiratory stress in the mitochondria to a nuclear transcriptional
response that promotes longevity [76]. Besides HIF-1, the C. elegans p53
homolog, CEP-1, also modulates longevity in OXPHOS mutants via
upregulation of stress response genes [75]. Moreover, the intrinsic
apoptosis pathway response to OXPHOS inhibition is also in part re-
sponsible for the increased longevity of these animals [77]. Impaired
respiration in several OXPHOS mutants triggers a transcriptional reac-
tion known as the ‘retrograde response’ which leads to metabolic re-
modeling, stress resistance, and mitochondrial biogenesis [78].

The connection between mild mitochondrial dysfunction and long-
evity may be associated with improved mitochondrial stress responses,
including proteostasis and turnover [20,74]. For instance, worms with a
reduced OXPHOS function in neurons have a prolonged lifespan due to
the activation of UPRmt in intestinal cells through a cell non-autono-
mous manner [79]. A similar genetic alteration caused by reduction of
mitochondrial ribosomal proteins, e.g. mrps-5, also prolonged worm
lifespan through UPRmt activation [80]. Similarly, increasing cellular
NAD+ levels by either genetic or pharmacological interventions could
slow down aging and age-related metabolic decline, which is mediated
by activation of stress responsive signaling through UPRmt and trans-
location of DAF-16 to the nucleus [81]. Additionally, in vivo and in
vitro studies showed that supplementation of the compound urolithin
A—typically found in pomegranate—could enhance mitochondrial
function and extend worm lifespan as well as improve muscle function
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in rodents [82]. This further supports the knowledge that the under-
lying mechanisms of longevity that are mediated by alteration in mi-
tochondrial function can be elucidated using C. elegans.

Increased longevity mediated by mild disruption of mitochondrial
function in worms may sound contradictory considering that mutations
causing mitochondrial dysfunction often cause severe diseases in hu-
mans [50]. However, gene knockdown or partial loss of function mu-
tations in worms show strong metabolic differences compared to
complete loss of function mutations [50,83]. As previously mentioned,
mild mitochondrial stress or disruption achieved by gene knockdown
results in an increased lifespan in C. elegans. Knockout of genes that
encode mitochondrial proteins, however, is often lethal and shortens
worm lifespan [80,84]. There is some evidence in mammalian models,
like mice, that mild perturbations of mitochondrial function, may in-
deed prolong lifespan. For instance, Mclk1, the mouse homolog of clk-1
in C. elegans, has a conserved function that is required for biosynthesis
of ubiquinone [85]. Mice with a homozygous deletion of the gene are
lethal but heterozygousMclkmice are long-lived compared to their wild
type counterparts, again suggesting that mild mitochondrial dysfunc-
tion extends lifespan [85]. Therefore, mitochondrial regulation may
still reveal promising candidates for further investigation and lead to
interventions that improve human aging.

2.7. Introduction to systems approaches in complex trait analysis

Most aging studies in model organisms apply a reverse genetic
strategy, which focuses on the phenotypic impact of the knockdown,
knockout, or overexpression of specific target genes (Fig. 2). Opposite
to reverse genetics, the forward genetic strategy can involve association
mapping of phenotypic variation based on genotypic variation
(Fig. 2A). It can be used to study the complex interactions between
genetic and environmental factors by observing the natural phenoty-
pical variation in a population to ultimately identify putative causal
genetic variants. Based on population genetics, the total phenotypic
variation is equal to the sum of environmental variance plus the genetic
variance [86]. Using this notion, the contribution of one component can
be estimated, if the other is kept constant. Thus, phenotypic variation in
genetically similar individuals can be mainly attributed to environ-
mental and stochastic factors. Indeed, human studies in monozygotic
twins provided valuable insights into the genetic basis of various
complex traits, such as neurological disorders [87], body-fat content
[88], and aging [89], although these types of studies tend to over-
estimate the genetic contribution to the phenotypic trait due to in-
evitable environmental similarities (e.g., prenatal effects) [89]. Simi-
larly, a stable environment allows an estimation of the genetic
contribution to complex traits, such as heritability.

2.8. Reverse vs. forward genetics

Aging studies using reverse genetics, including gain or loss of
function (G/LOF) studies, have successfully identified several aging-
related genes (Fig. 2B). However, the usually subtle effects of common
genetic variants are difficult to model via a reverse genetics approach,
e.g. gene knockout/knock-in introduces major alterations not com-
monly seen in nature [90]. This can lead to adaptation to G/LOF, which
results in a non-natural state. In comparison, forward genetics by means
of quantitative trait loci (QTL) mapping circumvents these issues by
exploring genetic variation in a wide-scale approach (Fig. 2). QTL
analysis is a statistical framework inferring the relation of a genetic
marker with a quantitative trait in a segregated population [91]. These
analyses pinpoint QTL—specific genomic regions associated with trait
variation in the population—giving insightful information about the
genetic architecture of complex traits such as metabolic disorders and
aging [92].

Forward genetics based on QTL analysis uses a population approach
to understand how heritable variation contributes to natural

phenotypic variation in a specific trait. More specifically, it aims to
identify loci or genetic variants associated with the trait [92]. However,
the identification of causal variants by QTL analysis is not straightfor-
ward, as this approach does not infer causal relationships. Often a
combination of forward and reverse genetics is required to confirm
causal variants [93–96]. Nevertheless, as forward genetics is an un-
biased approach not relying on prior target gene hypotheses, it has
often led to novel and unexpected discoveries [97]. For instance, nat-
ural variation in the gene tra-3 was found to affect temperature-de-
pendent growth [93].

2.9. Development of genetic analyses for complex aging related traits in
animal models

The study of complex quantitative aging related traits in human
populations poses additional challenges compared to a model-organism
approach. The study of aging in human populations relies on genome-
wide association studies (GWAS). GWAS aim to determine suscept-
ibility to complex diseases by associating genotype frequency with a
phenotypic trait. To date, many loci have been identified with GWAS
that are associated with susceptibility to complex diseases such as type I
and T2DM [98]. However, the drawback of GWAS is the requirement of
considerable sample-sizes to overcome confounding factors and the
detection of subtle variants [98]. These issues are less profound in a
QTL approach, which is used in controlled genetically segregated
breeding populations.

QTL analyses in mouse genetic reference populations (GRPs) such as
the so-called BXD mice, have led to the identification of several genes
associated with longevity [80,99]. Although mouse GRPs have proven
valuable for aging research, these types of association studies require
large sample sizes to achieve sufficient statistical power, while the cost
and ease of use of mice are in this respect far from optimal [92]. This is
especially relevant for aging studies, as the aging process is relatively
slow in mice. On the other hand, the nematode C. elegans has a rela-
tively short lifespan, is easily cultivated, and displays no inbreeding
depression or hybrid vigor, making it amendable to screen for gene-
phenotype associations using QTL mapping. In addition, genotypic
variation is readily obtained in C. elegans by generating segregating
populations that can be rapidly generated and easily stored in viable
cryopreserved stocks for later use and thereby avoid the threat of ge-
netic drift [100].

2.10. Inbred populations of C. elegans

Several populations of C. elegans have been generated and are cur-
rently being used for forward genetic studies (Fig. 2A). Populations of
recombinant inbred lines (RILs) have been employed to establish QTLs
for a wide range of traits, including life history traits, stress response,
and gene-expression plasticity [65,101,102]. Particularly, a RIL popu-
lation derived from the laboratory strain N2 and the genetically diverse
strain CB4856 from Hawaii has been used to study longevity and has
revealed natural genetic variation in C. elegans lifespan after heat shock
[65]. Resources such as the RILs prove effective for QTL analysis as they
contain a relatively high level of genetic variation, and QTL mapping
approaches depend on allelic variation to infer correlations with trait
variation [101]. Therefore, if specific key regulators are not genetically
variable, it is possible that these are not identified as QTL. However,
genetic variation and complex interactions in the genetic background
might still result in QTL originating from these genes [90,103]. This
indicates that a RIL population constructed from parental strains con-
taining divergent allelic variants can identify different QTLs. For in-
stance, a RIL population derived from a cross between Bergerac BO and
RC301 was used to identify seven lifespan QTLs [104], of which one
was successfully narrowed down to a single gene [105].

A recurring issue in forward genetics approaches is to delimit QTLs
to a sufficiently low number of candidate genes, so that it becomes
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experimentally feasible to identify the causal gene with a combination
of transgenesis or reverse genetics. These approaches have been parti-
cularly successful in C. elegans, where 14 allelic variants causal for QTL
have been identified (as reviewed in [106,107]). The strategies em-
ployed to identify the causal gene include narrowing down QTLs, e.g.
by increasing the marker-density, or generating additional cross-overs.
A C. elegans population created according to the latter strategy is the
recombinant inbred advanced intercross lines (RIAILs; [108]). These
RIAILs are intercrossed RILs from the N2xCB4856 population, thus
generating smaller segments of homologous recombination. In addition,
a novel population of RIAILs has been further optimized by removing

the laboratory-adapted neuropeptide receptor family 1 (npr-1) allele, a
known confounder in QTL analysis [107], and inserting a transposon in
the parental-effect epistatic embryonic lethal (peel-1) allele to reduce its
toxicity [109]. A second powerful approach used to increase mapping
resolution is linkage analysis, using a population of introgression lines
(ILs) [110]. ILs contain small segments derived from the CB4856 strain
in a N2 genetic background. Any phenotypic variation can thus be at-
tributed to specific loci, enabling more high-resolution QTL analysis
and overcoming confounding effects of other segregated QTLs. One
example of the power of such high-resolution mapping is illustrated by
a study using QTL analysis with ILs that were cultured under a peptone-

Fig. 2. The concepts of forward and reverse genetic analysis. (A) Scheme of using recombinant inbred lines (RILs) for forward genetics analysis to study complex traits in C. elegans, e.g.
lifespan. A model population was created by crossing the Bristol N2 and the Hawaii CB4856, followed by inbreeding of the F2 for more than 20 generations to develop homozygous RILs.
This forward genetics approach relies on identifying phenotypic variation followed by the identification of causal genetic factors. Lifespan or other phenotypic data of the RILs are
mapped to certain QTL and candidate genes are then screened and confirmed with complementation assay. (B) Reverse genetics analysis in C. elegans is a hypothesis-driven approach and
begins with a gene (or genes) of interest. Gain- or loss-of-function strategies, including for instance targeted mutations or RNAi, are used to modify the expression of the candidate gene in
order to study its function and determine the impact on complex traits (e.g. lifespan).
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deprived condition [111]. These ILs showed variable responses to this
form of CR, although most showed a lifespan extension. The fact that
CR, however, did not affect lifespan in specific ILs, indicates that CR has
a genotype-dependent effect on lifespan [111].

2.11. QTL mapping for studying gene by environment and gene by gene
interactions

Many traits are controlled by gene-by-environment (G × E) inter-
actions to some extent [112–114], and understanding these interactions

Fig. 3. Model of gene/diet interaction in the regulation of metabolic aging. Various dietary interventions can be applied in C. elegans to study interactions between environmental factors
and genetics/metabolic networks and the consequence on longevity phenotypes.
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can be of great importance for many diseases, particularly those that
are triggered by an environmental cue and/or are age-related. Fur-
thermore, the pervasiveness of G × E interactions indicates an im-
portant role for environmentally controlled genes in aging. For in-
stance, the number of loci regulating gene expression in C. elegans
decreases with age, whereas gene expression variation increases [115].
In addition, both age and diet have strong impact on metabolic changes
in C. elegans [116]. As such, this provides an ideal framework to in-
troduce controlled environmental challenges to identify QTLs involved
in G × E interactions. Moreover, this provides a method to estimate the
contribution of genotypic and environmental variance to aging. The
capability of this approach is exemplified in QTL analyses of C. elegans
lifespan variation. For instance, several QTL were identified to explain
the lifespan-shortening effect of the CB4856 allele by bin-mapping
mean lifespans of an IL population [110]. Additionally, lifespan varia-
tion was mapped in multiple studies after introducing environmental
challenges such as heat shock and caloric restriction [65,111].

Finally, forward genetics approaches allow the study of gene-gene
(G × G) interactions. Presumably, there are multiple G × G interac-
tions that regulate aging and identifying these is relevant for humans
that have diverse genetic backgrounds (as reviewed in [117]). The
epistatic G × G interactions are particularly interesting, because one or
multiple loci can mask the effect of other loci [117]. Contrasting to
additive effects, epistasis can lead to a gene exhibiting a different
phenotype than expected based on the genetic background (as reviewed
by [114]). Thus, exploring multiple genetic backgrounds is key for
studying these interactions, as they cannot be detected in a single ge-
netic background. In particular, epistasis can be successfully detected in
introgression lines; if the sum of the effect of the introgressed fragment
significantly differs from the mean phenotype of the parental strains,
then the interaction is likely epistatic [117]. Epistatic interactions have
been described in many model organisms, including C. elegans
[117–119].

Overall, the use of forward genetics provides a compelling approach
to study metabolism and aging linked to natural allelic variation in
populations. The established populations of C. elegans allow QTL ana-
lyses to generate new hypotheses and lay the foundation for follow-up
reverse genetics approaches. An important benefit is the potential for
unbiased screening for G × G and G × E interactions. Whereas reverse
genetics often requires prior knowledge or biases for involved genes,
forward genetics can approach this problem in an unbiased way.
Therefore, the use of natural variation offers a suitable approach for the
complexity of aging.

3. Discussion and future perspectives

Coordination between nutrient sensing and metabolic regulation
strongly influences the aging process and responses to stress. To study
these mechanisms, C. elegans is considered as one of the most amend-
able model organisms due to its rapid life cycle, fully annotated
genome, and ease of manipulation. Ever since a number of genes reg-
ulating the IIS pathway in C. elegans were identified as aging regulators
in the 1990s, numerous conserved mechanisms that mediate metabo-
lism and longevity have been reported. Despite the continued demands
for mammalian model experiments, C. elegans is a tractable model or-
ganism that can serve as an intermediate between in vitro studies and
higher model animals, and expedites translation to human studies. In
addition, using a worm model in the initial phase of a study may also
reduce the number of higher animal models required. Importantly,
aging research is not only focused on extension of lifespan but also on
how to prolong healthspan. Several types of assays are available to
examine healthspan in C. elegans, including movement capacity, phar-
yngeal pumping rate, and resistance to heat and oxidative stress
[18,120].

Individuals carrying different genetic backgrounds respond differ-
ently to dietary interventions. Most studies in C. elegans on genetic

effects of the CR response are focused on specific gene mutations. A
number of CR response mechanisms found via a reverse genetic ap-
proach could aid in finding candidate targets for age-related disease
prevention in humans. However, a major limitation of this type of ap-
proach is that the genetic complexity in outbred human populations
with natural genetic variations cannot be explored in model organisms
that contain a homogeneous genetic background. Studies that attempt
to address this challenge, for instance by using GRPs, demonstrate that
genetic background greatly affects the response to diets [121,122], but
performing such dietary interventions and correlating these to lifespan
or healthspan in large cohorts of mice remains challenging. C. elegans,
however, provides a suitable platform to investigate parallel dietary
interventions and link them to extension of either lifespan or health-
span using RILs and/or NILs. As the number of C. elegans (advanced)
RILs is getting larger and more refined, this allows us to investigate the
causal link between variation in complex traits, (e.g. lifespan) and the
impact of G × E [123]. Additionally, sensitive toolkits and technologies
to perform multiple “omics” have been developed in worms and are
ready for application in order to identify the relationship between ge-
netics, signaling, metabolic pathways, and overall phenotypes in a
“precision medicine” approach [116,124,125].

Finally, research into pharmaceutical compounds that slow down
aging processes is another objective in the aging field (Fig. 3). C. elegans
can be used as a model for compound screening to find potential
compounds that benefit human health [126]. It is important to consider
that not only individual (host) variation affects the outcome of these
treatments, but we are also starting to uncover the interaction with the
gut microbiota. Although no metabolic interventions of this type have
been reported yet, recent studies on the drug 5-fluorouracil showed that
metabolic conversion by gut bacteria affects the efficacy of the drug in
the worm [127,128]. It seems likely that similar processes are involved
in the regulation of nutrient processing and lifespan regulation, and C.
elegans and its bacterial diets provide a powerful platform to investigate
the interactions between host and bacteria.

In conclusion, here we have summarized the current knowledge
about metabolic control systems of aging in C. elegans. We believe that
C. elegans can continue to be an excellent model organism to elucidate
molecular mechanisms that are related to metabolism and dietary in-
terventions. Moreover, the ability to study age-related complex traits in
a natural worm population may aid in unraveling the genetic basis that
mediates longevity.
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