Standard

Nebulized Recombinant Human Tissue Factor Pathway Inhibitor Attenuates Coagulation and Exerts Modest Anti-inflammatory Effects in Rat Models of Lung Injury. / van den Boogaard, Florry E.; Hofstra, Jorrit J.; Brands, Xanthe et al.

In: Journal of aerosol medicine and pulmonary drug delivery, Vol. 30, No. 2, 2017, p. 91-99.

Research output: Contribution to journalArticleAcademicpeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{f4013eea670d47d79339d2aed1ae1d3d,
title = "Nebulized Recombinant Human Tissue Factor Pathway Inhibitor Attenuates Coagulation and Exerts Modest Anti-inflammatory Effects in Rat Models of Lung Injury",
abstract = "Critically ill patients are at a constant risk of direct (e.g., by pneumonia) or indirect lung injury (e.g., by sepsis). Excessive alveolar fibrin deposition is a prominent feature of lung injury, undermining pulmonary integrity and function. We examined the effect of local administration of recombinant human tissue factor pathway inhibitor (rh-TFPI), a natural anticoagulant, in two well-established models of lung injury in rats. Rats received intratracheal instillation of Pseudomonas aeruginosa, causing direct lung injury, or they received an intravenous injection of Escherichia coli lipopolysaccharide (LPS), causing indirect lung injury. Rats were randomized to local treatment with rh-TFPI or placebo through repeated nebulization. Challenge with P. aeruginosa or LPS was associated with increased coagulation and decreased fibrinolysis in bronchoalveolar lavage fluid (BALF) and plasma. Rh-TFPI levels in BALF increased after nebulization, whereas plasma rh-TFPI levels remained low and systemic TFPI activity was not affected. Nebulization of rh-TFPI attenuated pulmonary and systemic coagulation in both models, without affecting fibrinolysis. Nebulization of rh-TFPI modestly reduced the inflammatory response and bacterial growth of P. aeruginosa in the alveolar compartment. Local treatment with rh-TFPI does not alter systemic TFPI activity; however, it attenuates both pulmonary and systemic coagulopathy. Furthermore, nebulized rh-TFPI modestly reduces the pulmonary inflammatory response and allows increased bacterial clearance in rats with direct lung injury caused by P. aeruginosa",
author = "{van den Boogaard}, {Florry E.} and Hofstra, {Jorrit J.} and Xanthe Brands and Levi, {Marcel M.} and Roelofs, {Joris J. T. H.} and Zaat, {Sebastiaan A. J.} and {van't Veer}, Cornelis and {van der Poll}, Tom and Schultz, {Marcus J.}",
year = "2017",
doi = "10.1089/jamp.2016.1317",
language = "English",
volume = "30",
pages = "91--99",
journal = "Journal of aerosol medicine and pulmonary drug delivery",
issn = "1941-2703",
publisher = "Mary Ann Liebert Inc.",
number = "2",

}

RIS

TY - JOUR

T1 - Nebulized Recombinant Human Tissue Factor Pathway Inhibitor Attenuates Coagulation and Exerts Modest Anti-inflammatory Effects in Rat Models of Lung Injury

AU - van den Boogaard, Florry E.

AU - Hofstra, Jorrit J.

AU - Brands, Xanthe

AU - Levi, Marcel M.

AU - Roelofs, Joris J. T. H.

AU - Zaat, Sebastiaan A. J.

AU - van't Veer, Cornelis

AU - van der Poll, Tom

AU - Schultz, Marcus J.

PY - 2017

Y1 - 2017

N2 - Critically ill patients are at a constant risk of direct (e.g., by pneumonia) or indirect lung injury (e.g., by sepsis). Excessive alveolar fibrin deposition is a prominent feature of lung injury, undermining pulmonary integrity and function. We examined the effect of local administration of recombinant human tissue factor pathway inhibitor (rh-TFPI), a natural anticoagulant, in two well-established models of lung injury in rats. Rats received intratracheal instillation of Pseudomonas aeruginosa, causing direct lung injury, or they received an intravenous injection of Escherichia coli lipopolysaccharide (LPS), causing indirect lung injury. Rats were randomized to local treatment with rh-TFPI or placebo through repeated nebulization. Challenge with P. aeruginosa or LPS was associated with increased coagulation and decreased fibrinolysis in bronchoalveolar lavage fluid (BALF) and plasma. Rh-TFPI levels in BALF increased after nebulization, whereas plasma rh-TFPI levels remained low and systemic TFPI activity was not affected. Nebulization of rh-TFPI attenuated pulmonary and systemic coagulation in both models, without affecting fibrinolysis. Nebulization of rh-TFPI modestly reduced the inflammatory response and bacterial growth of P. aeruginosa in the alveolar compartment. Local treatment with rh-TFPI does not alter systemic TFPI activity; however, it attenuates both pulmonary and systemic coagulopathy. Furthermore, nebulized rh-TFPI modestly reduces the pulmonary inflammatory response and allows increased bacterial clearance in rats with direct lung injury caused by P. aeruginosa

AB - Critically ill patients are at a constant risk of direct (e.g., by pneumonia) or indirect lung injury (e.g., by sepsis). Excessive alveolar fibrin deposition is a prominent feature of lung injury, undermining pulmonary integrity and function. We examined the effect of local administration of recombinant human tissue factor pathway inhibitor (rh-TFPI), a natural anticoagulant, in two well-established models of lung injury in rats. Rats received intratracheal instillation of Pseudomonas aeruginosa, causing direct lung injury, or they received an intravenous injection of Escherichia coli lipopolysaccharide (LPS), causing indirect lung injury. Rats were randomized to local treatment with rh-TFPI or placebo through repeated nebulization. Challenge with P. aeruginosa or LPS was associated with increased coagulation and decreased fibrinolysis in bronchoalveolar lavage fluid (BALF) and plasma. Rh-TFPI levels in BALF increased after nebulization, whereas plasma rh-TFPI levels remained low and systemic TFPI activity was not affected. Nebulization of rh-TFPI attenuated pulmonary and systemic coagulation in both models, without affecting fibrinolysis. Nebulization of rh-TFPI modestly reduced the inflammatory response and bacterial growth of P. aeruginosa in the alveolar compartment. Local treatment with rh-TFPI does not alter systemic TFPI activity; however, it attenuates both pulmonary and systemic coagulopathy. Furthermore, nebulized rh-TFPI modestly reduces the pulmonary inflammatory response and allows increased bacterial clearance in rats with direct lung injury caused by P. aeruginosa

U2 - 10.1089/jamp.2016.1317

DO - 10.1089/jamp.2016.1317

M3 - Article

C2 - 27977318

VL - 30

SP - 91

EP - 99

JO - Journal of aerosol medicine and pulmonary drug delivery

JF - Journal of aerosol medicine and pulmonary drug delivery

SN - 1941-2703

IS - 2

ER -

ID: 3267831